
even a slight fall along with a gall in the average thickness due to the breakaway ~_., ~Y 

At the same time, there is a marked reduction in the rate of fall in the average thickness 
of tks continuous layer. 
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AN EXPERIMENTAL STUDY OF INTERNAL SOLITARY WAVES IN A TWO-LAYER LIQUID 

V. I. Bukreev and N. V. Gavrilov UDC 552.593 

Experimental data have been derived to check some theoretical results on internal soll- 
tary waves in two different cases. In the first, the solitary wave is generated at the in- 
terface between two thin layers of immiscible liquids with densities p, and:02 > p,, which 
are bounded below by a horizontal floor and above by a free surface, and which are at rest 
in the unperturbed state (Fig. la). This situation was first considered theoretically in 
the Boussinesq approximation in [i], and then under conditions where the Cort~ega-de Brees 
equation applies in [2, 3]. 

Experimental studies corresponding to this case were performed in [4, 5]. The informa- 
tion obtained there has been supplemented in our studies, in particular in that in the ex- 
periments the paths of the liquid particles were recorded along with the speed of the soli- 
tary wave and the profile of this. Previously, two laboratory studies had been performed 
on internal solidary waves in a liquid at rest in the unperturbed state [6, 7], but with a 
depth distribution of the density different from that given above and with a different flow 
geometry. 

In the second of these cases, the layers were bounded above by an impermeable horizon- 
tal cover, and, which is more important, there was a velocity shear between the layers in 
the unperturbed state (Fig. ib). It was first predicted that solitary waves can occur at 
the interface in this case on the basis of the second approximation in shallow-water theory 
by Ovsyannikov, and this study will be mentioned below as in [8] (a brief abstract of the 
paper is mentioned in the literature list under this number). 

In what follows we use immobile rectangular coordinate system x, y as shown in Fig. i 
(the different positions of the origin along the y axis and the different ways of specifying 
the depths in schemes aand b have been used for conformity with the corresponding theoreti- 
cal studies). The deviation of the interface from the equilibrium position is denoted by ~, 
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and the maximum deviation (wave amplitude) by a, with the wave propagation speed c. We 
consider only two-dimensional waves. 

To realize the scheme shown in Fig. la, we used a lucite trou~ of rectangular cross 
section and having a length of 220 cm, width 17 cm, and heist 15 cm. me stratification 
was produced by means of one of two parts of immiscible liquids: kerosene and water with a 
density ratio G=p]/p~ = 0.8 or water and khladone-ll3 with G = 0.67. me solitary wave at 
the interface was generated as in [4, 5] by the plate i, which was displaced a certain dis- 
tance along the vertical. ~is produced an undesirable perturbation in the free surface, 
which in the theoretical analysis corresponds to the so-called fast mode of oscillation. 
In the experiments, these perturbations were small in intensity and were effectively damped 
out by the ~clined plate 2. ~e waves were recorded by the conduct~ity transducers 3, 
which were made for these experiments by V. V. Zykov and E. I. Kha~ilev, and also by photo- 
graphic recording. 

me scheme of Fig. ~ was implemented in a lucite trout, in which the lower liqu~ 
Cater) could move with a speed uo uniformly distributed over the vertical in the initial 
section, while in the ~per layer (kerosene) there was only a web circulation due to the 
friction at the interface. ~e length of the working part was i00 cm, width 20 cm, and ~e 
heist H was varied. The solitary wave with its convexity d~nwards was generated by with- 
drawing the water through a perforated t~e sho~ as 1 in the figure, i.e., by the brief 
~plication of a si~ uniformly distributed over the width of the trough. ~e solitary 
wave with its convexity upwards was generated similarly by ~it~ing on a source, me water 
flow rate was measured ~th an overflow having a sharp edge placed in the pipeline. This 
had previously been cal~rated by the vol~etric method. ~is apparatus was also used in 
experiments with l~ers at rest in the unpertu~ed state, but wi~ an impe~e~le lid in 
place of ~e free surface as the upper bou~ary. In that case, the solitary waves were 
generated with a plate. 

The metrological characteristics of the transducers were such that there was a l~ear 
static calibration cu~e with negligibly s~ll ~steresis and with spatial and time resolu- 
tion meeting t~ requirements. The random errors of measurement were represented by a co- 
efficient of variation of not more ~an 5% and are illustrated by the spread in the points 
in the figures given below. 

The basic difference in the conditions in these models was that in the latter ones no 
allowance was made for the effects of the viscosity in the real liquids. ~so, at the in- 
terface there was surface tension, which was also not incorporated into the models. How- 
ever, in this study the surface tension played only a poslt~ve part. It effect~ely sup- 
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pressed the Kelvin-Helmholtz instability in the experiments with the moving lower layer up 
to a difference in velocity of about 30 cm/sec, while in accordance with estimates made 
from the formulas given in [9] there was practically no effect on the characteristics of 
the sufficiently long solitary waves. 

We consider the case of layers at rest in the unperturbed state. In accordance with 
[i, 3], the form of the solitary waves is then described by 

~(z,  t) ffi a se th  2 [ k ( z  - -  ct)l ,  ( 1 )  

where k is wave number and t is time. Different formulas are given in [i, 3] corresponding- 
ly for the speed c: 

(m -- i) a 
Cl ---- el~ J" q" mh, ~g'h,; (2), 

where 8 is the acceleration due to gravity and c~o, c2o, and a are certain dimensionless 
quantities [i, 3], which are dependent on the density ratio o and on the depth ratio m - 
h~/h2; the wave amplitude G, which governs not only c but also k, was considered as given, 

The theoretical analysls [1, 3] shows that for certain values of ~ and m only solitary 
waves can exist at the boundary with their convexity upwards (u �9 0), while for other values 
there can only be waves with the convexity downwards (~ < 0). At the free surface there is 
also a solltary wave in antlphase with the internal one and having a substantially smaller 
amplitude for the values of o and m considered in the experiments. These theoretical re- 
sults are qualitatively well confirmed in the experiments. 

The check on (2) and (3) is illustrated by Figs. 2 and 3, where case a relates to waves 
with G �9 0 and case b to ones with G < 0. In the first of these, we used all the experimen- 
tal data in the range of m from 0.36 to 3.3 and a/h2 from 0.04 to 0.6 with ~ - 0.8. Along 
the abscissa we have the calculated values of the wave speed, while along the ordlnatewe 
have the experimental values c e for the corresponding values of o, m, and u/h2. If there 
were ideal correlation between the calculated and experimental data, the points in Fig. 2 
would lie around a straight llne representing the bisector of the coordinate angle. In 
fact, there is a certain systematic deviation, which is somewhat larger for points 2, which 
correspond to the model of [3], as against points i, which correspond to the model of [I]. 

This deviation is not particularly large from the practical viewpoint, but it emphasizes 
a weak point in the mathematical models, which can be traced conveniently in [3], where the 
second approximation in shallow-water theory was used, but it was assumed that not one param- 
eter was small but two (as these parameters one can take the ratio of the depth of the 
lower layer to the wave length and the ratio of the wave amplitude to the depth of the lower 
layer), and it was assumed that they both had the same order of smallness. The assumption 
that the first is small is important to deriving significant theoretical results, but soli- 
tary waves of very small amplitude are of substantially less practical interest, and it would 
be desirable to eliminate this constraint on the theory. A similar deficiency occurs in [I]. 
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In [8], no constraint was placed on the wave amplitude and, as is shown below, this results 
in substantially better agreement between the calculated and observed speeds. 

A special experimental study is needed to determine what values of a/h2 can be consid- 
ered sufficiently small from the viewpoint of the models of [i, 3], since the upper bound 
to the smallness of this parameter is dependent in a complicated fashion on the values of 
c and m, and also on the permissible discrepancy between the calculated and experimental 
values. Here we merely note that in this respect (2) had advantages over (3). To illus- 
trate this, Fig. 3 shows the dependence of the wave speed on the amplitude with the following 
values of the parameters: ~ = 0,8, m = 3,3, h2 = 0192 cm for Fig. 3a and ~ = 0~8, m = 0.357, 

h2=3.8 cm for Fig. 3b. In both cases, the solid lines have been obtained by calculation 
from (2) and the broken ones from (3), while the points show the experimental data. 

Figure 4 compares the profiles of the solitary waves calculated from (I) and the ex- 
perimental ones for a<0, G = 0~8, m = 0~8 and for the two values of a/h2 given on the graphs. 
The calculations were based on the experimental value of a, since this parameter is consid- 
ered as given in the theory as regards the scheme for these experiments. The solid lines 
correspond to the model of [I] and the broken lines to that of [3], while the experimental 
data are shown by the points. The best results as regards wave shape are given by the model 
of [3] for a/h2 = 0.i. Then Figs. 2 and 3 indicate that the wave speed in not very much de- 
pendent on the profile, the amplitude being the more important parameter. 

Figure 5 shows the paths of the liquid particles in the solitary wave in an immobile 
coordinate system, which was recorded by using particles of aluminum dust of size a few mi- 
crons with c = 0.67, m = 8t5, h~ = i cm; the exposure time was 0.250 sec. The wave moved to 
the right and the horizontal projection of the particle velocities was directed to the left 
in the upper layer and to the right in the lower one. Distances between the divisions in 
the coordinate net engraved on the wall of the trough were 5 cm. One can clearly see the 
kinks in the particle paths at the interface, which indicates that the actual picture for 
the motion of the layers one with respect to the other corresponds closely to that used in 
the theoretical models. 

When there is relative motion between the layers (Fig. ib), the problem contains the 
further independent parameter u=uo/]/'g-H , which substantially extends the class of inter- 
esting phenomena but greatly complicates the examination. Here we give only restricted re- 
suits designed to check the formula for the wave speed [8]: 

where n =h/H; ~t =l--a ; when both layers are at rest, 

(4) 

C 4 
t - -  p.n 

Theoretical analysis [8] also shows that there is a critical value for the depth of the un- 
perturbed lower layer: 

H i -.V~- 
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Fig. 5 

TABLE i. 

H. crn he, crn 

4 2,75 
3,i5 2,40 
3,t5 2,40 
3,i5 0,85 
3,t5 1,00 
3 , t 5  t ,00 

i i i 

1,44 2,t5 
1,44 t,90 0 
0,54 i,iO 5,5 
0,60 ~ 'i,30 
0,60 1,45 0 

~t; cm/ 
- i~c  

19,3 
12,4 
12,9 
t55,  
i2,7 
i3 o 

c e c m / s e c  

~ , . = o  

19,0 
12,4 
i2,7 
15,4 
12J 

such that s ho > h o there can only be waves with a < 0 and for ho < h o only with ones 
~> 0. 

Table i gives results from an experimental check on (4) and (5), in which the three top 
lines correspond to ho > h* and the three lower ones to ho < h*; the last two columms give 
the experimental value c e and the theoretical value c t of the wave speed. There is good 
agreement, which is better than in the check on the models of [I, 3]. It should be noted 
that in the experiments with the moving lower layer, the solitary wave had a slightly un- 
symmetrical shape, for in the theory the wave is symmetrical. However, this does not lead 
to a discrepancy from the theoretical propagation speed, which agrees with what was said 
above .  

As regards the effects of viscosity, one may note that it only produces weak wave damp- 
ing, In the experiments on wave propagation in a liquid at rest it was found that the am- 
plitude fell by about a factor �9 over a distance s/Z = i00, where s is the path traveled 
and Z is the length of the base of the rectangle having height a and area equal to the wave 
area. There was repeated reflection from the end walls of the trough. 

We are indebted to L. V. Ovsyannikov for initiating these experiments and for consider- 
able assistance. 
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CALCULATION OF THE ADJOINT MASSES FOR AN ANNULAR BLADE ASSEMBLY 

L. A. Tkacheva UDC 535.5:621.22 

It is necessary to know the adjoint-mass coefficients in order to solve various problems 
in turbine aeroelasticity such as the calculation of the natural frequencies and forms of 
blade vibrations. These coefficients are known only for the planar set of plates [1-3], so 
interest attaches to estimating the effects Of the three-dimensional flow on their magnitudes~ 

Here we consider the adjoint masses ~or a three-dimensional ring set of thin blades 
performing small harmonic oscillations with a constant phase shift in an incompressible 
fluid. 

We use a cylindrical coordinate system r,8 , z for the ring set of N blades vibrating 
in a liquid between two unbounded cylinders Cl and Ca with radii rl and ra (Fig. i). We 
assume that: i) The liquid is ideal and incompressible and is at rest at infinity, while 
the flow is potential; 2) the blades are infinitely thin and represent screw surfaces de- 
fined by the equations 

z = h(O - -  2 ~ n / N ) ,  - -  Oo < 0 - -  2 ~ n / N  < 0o, r l  < r < r~, 

n = O, 1 , . . . ,  N - - t ,  

where h the pitch of the screw surface and 2~o the blade setting angle; 3) all the blades 
perform small oscillations with the same harmonic law but a certain phase shift ~=2~n/N, 
n = O , ~  i , . . . ,  N - - t .  

We transfer to dimensionless coordinates r' O' z' referred to the characteristic % , , 

length L = r2 --~,: r' = r/L, z' = z/L, 

�9 0'  = 0, h'  = h /L .  
In what follows, the primes are omitted. By virtue of the third assumption, the vibration 
law can be put as 

w(h)(r, O, t) = L / ( r ,  ~) exp [ i ~  -4- ~t)1, 

where w (k) are the displacements of the points on blade k along the normal, ~ is the circular 
frequency, and f(r, 8) is the dimensionless complex function that defines the form of the 
vibrations. We rerresent the velocity potential �9 in the form 

= i L ' ~ ( r ,  e ,  z ) e x p ( i e t ) .  

Here ~(r, 8, z) is a dimensionless complex function that satisfies the Laplace equation 

A r  = o (1)  

and the following boundary conditions: 

]ira I V r  = o; (2)  
I : 1 ~  

~ I o--~sh= ] ( r ,O)e ih~ ,  k =  0,1 . . . .  , N t; (3) 
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